Author
Aiden Lee, James Le
Date Published
March 1, 2024
Tags
Foundation models
Classification API
Multimodal AI
Search API
Video understanding
Embeddings
Share
Join our newsletter
You’re now subscribed to the Twelve Labs Newsletter! You'll be getting the latest news and updates in video understanding.
Oh no, something went wrong.
Please try again.

1 - Bullet Point Summary

  • Introduction to Marengo-2.6: A new state-of-the-art (SOTA) multimodal foundation model capable of performing any-to-any search tasks, including Text-To-Video, Text-To-Image, Text-To-Audio, Audio-To-Video, Image-To-Video, and more. This model represents a significant leap in video understanding technology, enabling more intuitive and comprehensive search capabilities across various media types.
  • New State-of-the-Art Performance: Marengo-2.6 sets new benchmarks in zero-shot text-to-video, text-to-image, and text-to-audio retrieval tasks with a single embedding model. It outperforms Google's VideoPrism-G model by +10% on the MSR-VTT dataset and +3% on the ActivityNet dataset. Additionally, it surpasses the state-of-the-art image foundation model in zero-shot text-to-image retrieval tasks, showcasing its ability to understand and process visual content The results bolster the efficacy of our video-first research ethos. An AI system that learns from video can exhibit impressive perceptual reasoning abilities across multiple modalities.
  • Expanded Multimodal Capabilities: The model's expanded capabilities allow for any-to-any (cross-modality) retrieval tasks, making it a versatile tool for a wide range of applications. This includes text-to-video, text-to-image, text-to-audio, audio-to-video, and image-to-video tasks, bridging different media types.
  • Enhanced Temporal Localization: The model introduces a Reranker model for better temporal localization. This enhancement allows for more precise search results.

‍

2 - The Rise of Video Foundation Models

Source: https://www.twelvelabs.io/blog/the-past-present-and-future-of-video-understanding-applications

Video data is inherently redundant, high-dimensional, and temporally structured, closely resembling sensory data but difficult to parse and interpret. Traditional models often struggle to capture the nuanced interplay between frames, missing out on the rich contextual cues that give video its meaning.

The journey towards effective video understanding has seen significant advancements in multimodal embedding models. The understanding that human perception is inherently multimodal has led to the development of models capable of processing and integrating multiple types of data.

By integrating visual, textual, and auditory information, multimodal embedding models learn much more robust representations of the world. Marengo-2.6 is the culmination of our efforts, offering unparalleled capabilities in video understanding and any-to-any retrieval tasks.

‍

3 - Marengo 2.6 Model Overview

3.1 - Architecture: Gated Modality Experts
Figure 1: Model Architecture

Marengo-2.6's architecture, as shown in the visual diagram above, is based on the concept of "Gated Modality Experts". This allows for the processing of multimodal inputs through specialized encoders before combining them into a comprehensive multimodal representation.

The architecture consists of several key components:

  • The Visual Expert processes visual information to capture appearance, motion, and temporal changes within the video.
  • The Audio Expert processes auditory information to capture both verbal and non-verbal audio signals related to the video.
  • The Gated Fusion Module assesses the contribution of each expert for videos, and merges them into a unified multimodal representation for any-to-any retrieval tasks.
3.2 - Training and Data

Training for Marengo-2.6 focuses on self-supervised learning with contrastive loss on a comprehensive multimodal dataset. As we mentioned in our previous blog, we've curated and augmented a dataset that's beneficial for training the model. It contains:

  • Video Data: 60 million videos, with both visual and auditory information extracted
  • Image Data: 500 million images
  • Audio Data: 500k sounds, including both general non-verbal sounds and music

This diverse, large-scale dataset has allowed Marengo-2.6 to gain a deep understanding of various modalities, equipping it to handle a wide range of retrieval tasks.

‍

4 - Evaluation and Results

4.1 - Quantitative Results
Figure 2: Marengo-2.6 achieves the new SOTA across all multimodal retrieval tasks

Marengo-2.6 model has been evaluated against a range of state-of-the-art foundation models from diverse modalities. Quantitative results show its superior performance in various text-to-any retrieval tasks.

The model sets new state-of-the-art performance records across all text-to-any retrieval datasets, surpassing existing models by a considerable margin. We plan to release broader benchmark results for general embedding-based tasks soon.

Baseline Models
  1. Data Filtering Network-H/14-378 (Fang et al, Apple & University of Washington, 2023.09): This open-source image foundation model is based on the CLIP training objective. It was trained on 5 billion image-text pairs with a 378x378 image resolution.
  2. LanguageBind-H (Zhu et al, Peking University, 2024.02): This open-source video foundation model processes both audio and visual information and was reportedly trained on 10 million video-text pairs (VIDAL-10m dataset).
  3. VideoPrism-G (Zhao et al, Google, 2024.02): This video foundation model processes visual information and was reportedly trained on 618 million video-text pairs.
  4. (Commercial) Google Gemini(GenAI) Multimodal Embedding API
Zero-shot Video Retrieval (ZS-T2V):
Table 1: Zero-shot video retrieval performance

Marengo-2.6 has set a new state-of-the-art on MSR-VTT and ActivityNet datasets, with average recall improvements of +4% on MSR-VTT and +2.9% on ActivityNet compared to the previous best models. (Average recall is calculated as the mean of Recall@1 and Recall@5)

Zero-shot Image Retrieval (ZS-T2I):
Table 2: Zero-shot image retrieval performance

The model also establishes the new state-of-the-art performance on the MS-COCO and Flickr30k datasets. Remarkably, it surpasses the previous state-of-the-art image foundation model, which was exclusively trained on a large corpus of image data. This suggests that Marengo-2.6 is capable of learning spatial visual cues effectively through a large video corpus. (Average recall is calculated as the mean of Recall@1 and Recall@5)

Zero-shot Audio Retrieval (ZS-T2A):
Table 3: Zero-shot audio retrieval performance

Lastly, the model sets the new state-of-the-art performance on Clotho and AudioCaps datasets by learning auditory cues from videos. However, compared to the visual retrieval benchmark, the absolute performance is lower. This discrepancy highlights an area for potential improvement in future model iterations. (Average recall is calculated as the mean of Recall@1 and Recall@10)

These results not only validate the effectiveness of our model's architecture and training but also underscore its potential to accelerate the advancement in the field of multimodal data retrieval and understanding.

4.2 - Qualitative Retrieval Results

Generation Examples
No items found.
Text-To-Video (T2V)
Text-To-Image (T2I)
Text-To-Audio (T2A)
Audio-To-Video (A2V)
Image-To-Video (I2V)
Video-To-Video (V2V)
Comparison against existing models
No items found.

‍Closing Remarks

Twelve Labs is proud to introduce Marengo-2.6. Our video foundation model offers a pioneering approach to multimodal representations tasks not just to video but also image and audio. It is a meaningful first step towards achieving our mission of making videos just as easy as text.

In the upcoming week of March 2024, we will make Marengo-2.6 available on our Playground and API environments. This will provide users with the opportunity to interact with the model firsthand, experiencing its capabilities and integrating its state-of-the-art performance into their own applications and workflows.

Our team is committed to continuous improvement and transparency in the performance of our models. To that end, we will soon release a broader benchmark that compares Marengo-2.6 against other embedding tasks. This will offer a more comprehensive view of the model's performance and its standing in the field.

We are a group of friendly, curious, and passionate people from all walks of life with a vision of driving the technological singularity for the betterment of humanity.

More coming soon.

‍

Acknowledgement - Twelve Labs Team:

This is a joint team effort across multiple functional groups including model and data (”core” indicates Core Contributor), engineering, product and business development. (First-name alphabetical order)

Model: Aiden Lee, Cooper Han, Flynn Jang, Jae Lee, Jay Yi, Jeff Kim (core), Jeremy Kim, Kyle Park, Lucas Lee, Mars Ha (core), Minjoon Seo, Ray Jung, William Go

Data: Daniel Kim (core), Jay Suh (core)

Deployment: Abraham Jo, Ed Park, Hassan Kianinejad, SJ Kim, Tony Moon, Wade Jeong

Product: Andrei Popescu, Esther Kim, EK Yoon, Genie Heo, Henry Choi, Jenna Kang, Kevin Han, Noah Seo, Sunny Nguyen, Ryan Won, Yeonhoo Park

Business & Operations: Anthony Giuliani, Dave Chung, Hans Yoon, James Le, Jenny Ahn, June Lee, Maninder Saini, Meredith Sanders, Soyoung Lee, Sue Kim, Travis Couture

‍

Resources:

  1. Link to sign up and play with our API (Marengo-2.6 will be available in our Playground in the upcoming week of March)
  2. Link to the API documentation
  3. Link to our Discord community to connect with fellow users and developers

If you use this model in your work, please use the following BibTeX citation and cite the author as Twelve Labs:

@misc{marengo-2.6,  author = {Twelve Labs},  title = {Introducing Marengo-2.6-medium},  url = {https://app.twelvelabs.io/blog/introducing-marengo-2-6},  year = {2024}}

Related articles

Building a Shade Finder App: Using Twelve Labs' API to Pinpoint Specific Colors in Videos

Whether you're looking to find the perfect berry-toned lipstick or just curious about spotting specific colors in your videos, this guide will help you leverage cutting-edge AI to do so effortlessly.

Meeran Kim
Building Advanced Video Understanding Applications: Integrating Twelve Labs Embed API with LanceDB for Multimodal AI

Leverage Twelve Labs Embed API and LanceDB to create AI applications that can process and analyze video content with unprecedented accuracy and efficiency.

James Le, Manish Maheshwari
A Recap of Denver Multimodal AI Hackathon

We had fun interacting with the AI community in Denver!

James Le
Advanced Video Search: Leveraging Twelve Labs and Milvus for Semantic Retrieval

Harness the power of Twelve Labs' advanced multimodal embeddings and Milvus' efficient vector database to create a robust video search solution.

James Le, Manish Maheshwari